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Abstract. Multiclass SVMs are usually implemented by combining sev-
eral two-class SVMs. The one-versus-all method using winner-takes-all
strategy and the one-versus-one method implemented by max-wins vot-
ing are popularly used for this purpose. In this paper we give empirical
evidence to show that these methods are inferior to another one-versus-
one method: one that uses Platt’s posterior probabilities together with
the pairwise coupling idea of Hastie and Tibshirani. The evidence is par-
ticularly strong when the training dataset is sparse.

1 Introduction

Binary (two-class) classification using support vector machines (SVMs) is a very
well developed technique [1] [11]. Due to various complexities, a direct solu-
tion of multiclass problems using a single SVM formulation is usually avoided.
The better approach is to use a combination of several binary SVM classi-
fiers to solve a given multiclass problem. Popular methods for doing this are:
one-versus-all method using winner-takes-all strategy (WTA SVM); one-versus-
one method implemented by max-wins voting (MWV SVM); DAGSVM [8]; and
error-correcting codes [2].

Hastie and Tibshirani [4] proposed a good general strategy called pairwise
coupling for combining posterior probabilities provided by individual binary clas-
sifiers in order to do multiclass classification. Since SVMs do not naturally give
out posterior probabilities, they suggested a particular way of generating these
probabilities from the binary SVM outputs and then used these probabilities
together with pairwise coupling to do muticlass classification. Hastie and Tib-
shirani did a quick empirical evaluation of this method against MWV SVM and
found that the two methods give comparable generalization performances.

Platt [7] criticized Hastie and Tibshirani’s method of generating posterior
class probabilities for a binary SVM, and suggested the use of a properly designed
sigmoid applied to the SVM output to form these probabilities. However, the
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use of Platt’s probabilities in combination with Hastie and Tibshirani’s idea of
pairwise coupling has not been carefully investigated thus far in the literature.
The main aim of this paper is to fill this gap. We did an empirical study and
were surprised to find that this method (we call it as PWC PSVM) shows a
clearly superior generalization performance over MWV SVM and WTA SVM;
the superiority is particularly striking when the training dataset is sparse.

We also considered the use of binary kernel logistic regression classifiers1 to-
gether with pairwise coupling. We found that even this method is somewhat
inferior to PWC PSVM, which clearly indicates the goodness of Platt’s prob-
abilities for SVMs. The results of this paper indicate that PWC PSVM is the
best single kernel discriminant method for solving multiclass problems.

The paper is organized as follows. In section 2, we briefly review the various
implementations of one-versus-all and one-versus-one methods that are stud-
ied in this paper. In section 3, we describe the numerical experiments used to
study the performances of these implementations. The results are analyzed and
conclusions are made in section 4. The manuscript of this paper was prepared
previously as a technical report [3].

2 Description of Multiclass Methods

In this section, we briefly review the implementations of the multiclass methods
that will be studied in this paper. For a given multiclass problem, M will denote
the number of classes and ωi, i = 1, . . . ,M will denote the M classes. For binary
classification we will refer to the two classes as positive and negative; a binary
classifier will be assumed to produce an output function that gives relatively
large values for examples from the positive class and relatively small values for
examples belonging to the negative class.

2.1 WTA SVM

WTA SVM constructs M binary classifiers. The ith classifier output function
ρi is trained taking the examples from ωi as positive and the examples from all
other classes as negative. For a new example x, WTA SVM strategy assigns it
to the class with the largest value of ρi.

2.2 MWV SVM

This method constructs one binary classifier for every pair of distinct classes
and so, all together M(M − 1)/2 binary classifiers are constructed. The binary
classifier Cij is trained taking the examples from ωi as positive and the examples
from ωj as negative. For a new example x, if classifier Cij says x is in class ωi,
then the vote for class ωi is added by one. Otherwise, the vote for class ωj is
increased by one. After each of the M(M −1)/2 binary classifiers makes its vote,
MWV strategy assigns x to the class with the largest number of votes.

1 These classifiers provide natural posterior probabilities as part of their solution.
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2.3 Pairwise Coupling

If the output of each binary classifier can be interpreted as the posterior proba-
bility of the positive class, Hastie and Tibshirani [4] suggested a pairwise coupling
strategy for combining the probabilistic outputs of all the one-versus-one binary
classifiers to obtain estimates of the posterior probabilities pi = Prob(ωi|x),
i = 1, . . . , M . After these are estimated, the PWC strategy assigns the example
under consideration to the class with the largest pi.

The actual problem formulation and procedure for doing this are as follows.
Let Cij be as in section 2.2. Let us denote the probabilistic output of Cij as
rij = Prob(ωi|ωi or ωj). To estimate the pi’s, M(M − 1)/2 auxiliary variables
µij ’s which relate to the pi’s are introduced: µij = pi/(pi + pj). pi’s are then
determined so that µij ’s are close to rij ’s in some sense. The Kullback-Leibler
distance between rij and µij is chosen as the measurement of closeness:

l(p) =
∑

i<j

nij

(
rij log

rij

µij
+ (1 − rij) log

1 − rij

1 − µij

)
(1)

where nij is the number of examples in ωi∪ωj in the training set.2 The associated
score equations are (see [4] for details):

∑

j �=i

nijµij =
∑

j �=i

nijrij , i = 1, · · · ,M, subject to
M∑

k=1

pk = 1 (2)

The pi’s are computed using the following iterative procedure:

1. Start from an initial guess of pi’s and corresponding µij ’s
2. Repeat (i = 1, . . . ,M , 1, . . .) until convergence:

– pi ← pi ·
∑

j �=i
nijrij∑

j �=i
nijµij

– renormalize the pi’s
– recompute µij ’s

Let p̃i = 2
∑

j rij/k(k − 1). Hastie and Tibshirani [4] showed that the multi-
category classification based on p̃i’s is identical to that based on the pi’s obtained
from pairwise coupling. However, p̃i’s are inferior to the pi’s as estimates of
posteriori probabilities. Also, log-likelihood values play an important role in the
tuning of hyperparameters (see section 3). So, it is always better to use the pi’s
as estimates of posteriori probabilities.

A recent paper [12] proposed two new pairwise coupling schemes for estima-
tion of class probabilities. They are good alternatives for the pairwise coupling
method of Hastie and Tibshirani.

2 It is noted in [4] that, the weights nij in (1) can improve the efficiency of the estimates
a little, but do not have much effect unless the class sizes are very different. In
practice, for simplicity, equal weights (nij = 1) can be assumed.
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Kernel logistic regression (KLR) [10] has a direct probabilistic interpretation
built into its model and its output is the positive class posterior probability.
Thus KLR can be directly used as the binary classification method in the PWC
implementation. We will refer to this multiclass method as PWC KLR.

The output of an SVM, however, is not a probabilistic value, but an un-
calibrated distance measurement of an example to the separating hyperplane in
the feature space. Platt [7] proposed a method to map the output of an SVM
into the positive class posterior probability by applying a sigmoid function to
the SVM output:

Prob(ω1|x) =
1

1 + eAf+B
(3)

where f is the output of the SVM associated with example x. The parameters
A and B can be determined by minimizing the negative log-likelihood (NLL)
function of the validation data. A pseudo-code for determining A and B is also
given in [7]; see [6] for an improved pseudo-code. To distinguish from the usual
SVM, we refer to the combination of SVM together with the sigmoid function
mentioned above as PSVM. The multiclass method that uses Platt’s probabilities
together with PWC strategy will be referred to as PWC PSVM.

3 Numerical Experiments

In this section, we numerically study the performance of the four methods dis-
cussed in the previous section, namely, WTA SVM, MWV SVM, PWC PSVM
and PWC KLR. For all these kernel-based classification methods, the Gaussian
kernel, K(xi,xj) = e−‖xi−xj‖2/2σ2

is employed. Each binary classifier, whether it
is SVM, PSVM or KLR, requires the selection of two hyperparameters: a regular-
ization parameter C and a kernel parameter σ2. Every multi-category classifica-
tion method included in our study involves several binary classifiers. In line with
the suggestion made by Hsu and Lin [5], we take the C and σ2 of all the binary
classifiers within a multiclass method to be the same.3 The two hyperparameters
are tuned using 5-fold cross-validation estimation of the multiclass generaliza-
tion performance. We select the optimal hyperparameter pair by a two-step grid
search. First we do a coarse grid search using the following sets of values: C ∈
{1.0e-3, · · ·, 1.0e+3} and σ2 ∈ {1.0e-3, · · ·, 1.0e+3}. Thus 49 combinations of
C and σ2 are tried in this step. An optimal pair (Co, σ

2
o) is selected from this

coarse grid search. In the second step, a fine grid search is conducted around
(Co, σ

2
o), with C ∈ {0.2Co, 0.4Co, 0.6Co, 0.8Co, Co, 2Co, 4Co, 6Co, 8Co} and σ2 ∈

{0.2σ2
o , 0.4σ2

o , 0.6σ2
o , 0.8σ2

o , σ2
o , 2σ2

o , 4σ2
o , 6σ2

o , 8σ2
o}. All together, 81 combinations

of C and σ2 are tried in this step. The final optimal hyperparameter pair
is selected from this fine search. In each grid search, especially in the fine
search step, it is quite often the case that there are several pairs of hyperpa-
rameters that give the same cross validational classification accuracy. In such

3 An alternative is to choose the C and σ2 of each binary classifier to minimize the
generalization error of that binary classification problem.
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Table 1. Basic information and training set sizes of the five datasets

Dataset #Classes #Total Examples
Training Set Sizes

Small Medium Large

ABE 3 2,323 280 560 1,120
DNA 3 3,186 300 500 1,000
SAT 6 6,435 1,000 1,500 2,000
SEG 7 2,310 250 500 1,000
WAV 3 5,000 150 300 600

a situation, we have found it worthwhile to follow some heuristic principles
to select one pair of C and σ2 from these short-listed combinations. For the
methods with posteriori probability estimates, where a cross-validation esti-
mate of error rate (cvErr) as well as a cross-validation estimate of negative
log-likelihood (cvNLL) are available, the following strategies are applied se-
quentially until we find one unique parameter pair: (a) select the pair with
smallest cvErr value; (b) select the pair with smallest cvNLL value; (c) se-
lect the pair with larger σ2 value; (d) select the pair with smaller C value;
(e) select the pair with smallest 8-neighbor average cvErr value; (f ) select the
pair with smallest C value. Usually step (b) yields a unique pair of hyperpa-
rameters. For the methods without posteriori probability estimates, step (b) is
omitted.

The performance of the four methods are evaluated on the following datasets
taken from the UCI collection: ABE, DNA, Satellite Image (SAT), Image Segen-
tation (SEG) and Waveform (WAV). ABE is a dataset that we extracted from
the dataset Letter by using only the classes corresponding to the characters
“A”, “B” and “E”. Each continuous input variable of these datasets is nor-
malized to have zero mean and unit standard deviation. For each dataset, we
divide the whole data into a training set and a test set. When the training set
size is large enough, all the methods perform equally very well. Differences be-
tween various methods can be clearly seen only when the training datasets are
sparse. So, instead of using a single training set size (that is usually chosen to
be reasonably large in most empirical studies), we use three different training
set sizes: small, medium and large. For each dataset, the basic information to-
gether with the values of the three training set sizes are summarized in Table 1.
For each dataset, at each training set size, the whole data is randomly parti-
tioned into a training set and a test set 20 times by stratified sampling. For
each such partition, after each multi-category classifier is designed using solely
the training set, it is tested on the test set. The mean and standard devia-
tion of the test set error rate (in percentage) are computed over the 20 runs.
The results are reported in Table 2. Full details of all runs can be found at:
http://guppy.mpe.nus.edu.sg/˜mpessk/multiclass.shtml
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Table 2. Mean and standard deviation of test set error (in percentage) over 20 divisions
of training and test sets, for the five datasets, at the three training set sizes (small,
medium and large)

Dataset
Training Method

Set Size WTA SVM MWV SVM PWC PSVM PWC KLR

ABE
280 1.92±0.65 1.96±0.65 1.16±0.63 1.85±0.59
560 0.96±0.36 1.06±0.42 0.58±0.29 1.02±0.43

1,120 0.46±0.20 0.50±0.24 0.34±0.17 0.57±0.26

DNA
300 10.15±1.26 9.87±0.90 9.23±1.73 9.73±0.75
500 7.84±0.79 7.67±0.93 7.41±1.14 7.80±0.71

1,000 5.59±0.39 5.72±0.57 5.50±0.69 5.76±0.54

SAT
1,000 11.07±0.58 11.03±0.73 10.27±0.92 11.20±0.55
1,500 10.08±0.49 10.20±0.51 10.05±0.60 10.23±0.42
2,000 9.51±0.31 9.61±0.39 9.47±0.65 9.66±0.37

SEG
250 9.43±0.54 7.97±1.23 6.66±2.24 7.54±1.24
500 6.51±0.99 5.40±1.04 5.19±0.74 4.83±0.68

1,000 4.89±0.71 4.35±0.79 4.08±0.52 3.96±0.68

WAV
150 17.21±1.37 17.75±1.39 13.20±3.70 15.59±1.13
300 15.43±0.97 15.96±0.98 12.97±2.02 14.71±0.72
600 14.09±0.55 14.56±0.80 13.47±1.09 13.81±0.41

4 Results and Conclusions

Let us now analyze the results from our numerical study. From Table 2 we can
see that, PWC PSVM gives the best classification results and has significantly
smaller mean values of test error. For WTA SVM, MWV SVM and PWC KLR,
it is hard to tell which one is better.

To give a more vivid presentation of the results from the numerical study, we
draw, for each dataset and each training set size, a boxplot to show the 20 test
errors of each method, obtained from the 20 partitions of training and test. The
boxplots are shown in Figure 1. These boxplots clearly support the observation
that PWC PSVM is better than the other three methods. On some datasets,
although the variances of PWC PSVM error rates are larger than those of other
methods, the corresponding median values of PWC PSVM are much smaller
than other three methods.

The boxplots also show that, as the training set size gets larger, the classi-
fication performances of all four methods get better and the performance dif-
ferences between them become smaller. This re-emphasizes the need for using
a range of training set sizes when comparing two methods. A good method
should work well, even at small training set size. PWC PSVM has this
property.

We have also done a finer comparison of the methods by pairwise t-test. The
results further consolidate the conclusions drawn from Table 2 and Figure 1. To



284 K.-B. Duan and S.S. Keerthi

280 560 1120

0

0.5

1

1.5

2

2.5

3

3.5

4

Training Set Size

T
es

t E
rr

or
 R

at
e(

 %
 )

−−−−−−−−−−−−  
  Dataset: ABE
−−−−−−−−−−−−  

300 500 1000

4

5

6

7

8

9

10

11

12

13

Training Set Size

T
es

t E
rr

or
 R

at
e(

 %
 )

−−−−−−−−−−−−   
  Dataset: DNA 
−−−−−−−−−−−−   

1000 1500 2000

8

9

10

11

12

13

14

Training Set Size

T
es

t E
rr

or
 R

at
e(

 %
 )

−−−−−−−−−−−−  
  Dataset: SAT
−−−−−−−−−−−−  

250 500 1000

2

3

4

5

6

7

8

9

10

11

12

Training Set Size

T
es

t E
rr

or
 R

at
e(

 %
 )

−−−−−−−−−−−−  
  Dataset: SEG
−−−−−−−−−−−−  

150 300 600 

8

10

12

14

16

18

20

22

Training Set Size

T
es

t E
rr

or
 R

at
e(

 %
 )

−−−−−−−−−−−−  
  Dataset: WAV
−−−−−−−−−−−−  

  

 

For each dataset,          
at each training set size, 
from left to right,        
the four methods are:      
     WTA_SVM,             
     MWV_SVM,             
     PWC_PSVM and         
     PWC_KLR.             

Note:

Fig. 1. The boxplots of the four methods for the five datasets, at the three training set
sizes (small, medium and large). For easy comparison the boxplots of the four methods
are put side by side

keep the paper short, we are not including the description of the pairwise t-test
comparison and the p-values from the study. Interested readers may refer to our
technical report [3] for details.
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To conclude, we can say the following. WTA SVM, MWV SVM and PWC KLR

are competitive with each other and there is no clear superiority of one method
over another. PWC PSVM consistently outperforms the other three methods.
The fact that the method is better than PWC KLR indicates the goodness of
Platt’s posterior probabilities. PWC PSVM using one of the pairwise coupling
schemes in [4] and [12] is highly recommended as the best kernel discriminant
method for solving multiclass problems.
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